Chapter \# 8 $\mathrm{CFG}=\mathrm{PDA}$

Dr. Shaukat Ali
Department of Computer Science
University of Peshawar

Converting CFG into PDA.

- If we are given a CFG in CNF as follows:

$$
\begin{array}{lll}
\mathrm{X}_{1} & \rightarrow & \mathrm{X}_{2} \mathrm{X}_{3} \\
\mathrm{X}_{2} & \rightarrow & \mathrm{X}_{4} \mathrm{X}_{5} \\
& --- & \\
\mathrm{X}_{3} & \rightarrow & \mathrm{a} \\
\mathrm{X}_{4} & \rightarrow & \mathrm{a} \\
\mathrm{X}_{5} & \rightarrow & \mathrm{~b}
\end{array}
$$

- Where the start symbol $\mathrm{S}=\mathrm{X}_{1}$ and other nonterminals are $\mathrm{X}_{2}, \mathrm{X}_{3}$, ----.
- We can use the following algorithm to construct PDA.

Algorithm for converting CFG into PDA.

- If X_{i} is the start symbol then convert in to the following PDA.

- For each production of the form

$$
\mathrm{X}_{\mathrm{j}} \quad \rightarrow \quad \mathrm{X}_{\mathrm{k}} \mathrm{X}_{1}
$$

we include the circuit from the POP back to itself.

Algorithm for converting CFG into PDA.

- For all production of the form

$$
\mathrm{X}_{\mathrm{j}} \quad \rightarrow \quad \mathrm{~b}
$$

we include this circuit.

Algorithm for converting CFG into PDA.

- When the stack is empty, which means that we have converted our last nonterminal to a terminal and the terminals have matched the INPUT TAPE, we should include the following circuit.

Algorithm for converting CFG into PDA.

- By using this algorithm, we can assure that all words generated by the CFG will be accepted by the resultant PDA machine.
- That is all for a grammar that is in CNF. But there are context-free languages that cannot be put into CNF.
- In this case we can convert all productions into one of the two forms acceptable by CNF, while the word Λ must still be included.
- To include this word, we need to add another circuit to the ${ }_{1} P D A$, a simple loop at the POP.

Algorithm for converting CFG into PDA.

- This kills the nonterminal S without replacing with anything and the next time we enter the POP, we get a blank and proceed to accept the word.

Example.

- Consider the following grammar which is in CNF.

S	\rightarrow	SB
S	\rightarrow	AB
A	\rightarrow	CC
B	\rightarrow	b
C	\rightarrow	a

convert this grammar into equivalent PDA.

Left-most derivation.

- Lets consider an example aab and derive it by using left-most derivation using the grammar.

Working string generation. Productions used.
$S=A$ AB
S
\rightarrow
AB Step 1
$\Rightarrow C C B$
$\mathrm{A} \quad \rightarrow \quad \mathrm{CC} \quad$ Step 2
$\Rightarrow a C B$
C
$\mathrm{C} \quad \rightarrow$
a
Step 3
$\Rightarrow a \mathrm{ab}$
B
\rightarrow
a
Step 4
$=>$ abb
\rightarrow
b
Step 5

Left-most derivation.

- Now if we simulate the same string aab by using the resultant PDA, we will see this derivation is also left-most.
- At each step we will nonterminals on the STACK as that we have in working string generation in the left-most derivation.
- It means that if we construct PDA for a CFG by using the above algorithm, the derivation will be left most derivation.

Example.

- Consider the the following CFG, which is in CNF.

S	\rightarrow	AB
A	\rightarrow	BB
B	\rightarrow	AB
A	\rightarrow	a
B	\rightarrow	a
B	\rightarrow	b

Construct PDA for this grammar.

Resulting PDA.

Exercise.

- Try deriving the string baaab by using both leftmost derivation and simulating by using the resultant PDA.

Example.

$$
\begin{aligned}
& \text { - Consider the following CFG. } \\
& \mathrm{S} \quad \rightarrow \quad \mathrm{AR}_{1} \quad \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{R}_{1} \rightarrow \mathrm{SA} \\
& \mathrm{~B} \quad \rightarrow \quad \mathrm{~b} \\
& \mathrm{~S} \rightarrow \mathrm{BR}_{2} \quad \mathrm{~S} \quad \rightarrow \quad \Lambda \\
& \mathrm{R}_{2} \rightarrow \quad \mathrm{SB} \\
& \mathrm{~S} \quad \rightarrow \quad \mathrm{AA} \\
& \mathrm{~S} \quad \rightarrow \quad \mathrm{BB} \\
& \mathrm{~S} \quad \rightarrow \quad \mathrm{a} \\
& \mathrm{~S} \quad \rightarrow \quad \mathrm{~b} \\
& \begin{array}{l}
a \\
b \\
\Lambda
\end{array}
\end{aligned}
$$

Resulting PDA.

Example.

- Let us convert the CFG
$\mathrm{S} \quad \rightarrow \quad \mathrm{bA} \mid \mathrm{aB}$
$\mathrm{A} \quad \rightarrow \quad \mathrm{bAA}|\mathrm{aS}| \mathrm{a}$
$\mathrm{B} \quad \rightarrow \quad \mathrm{aBB}|\mathrm{bS}| \mathrm{b}$

Construct PDA for this grammar.

- As this grammar is not in CNF, therefore:

1. Convert this grammar into CNF.
2. Construct PDA for the CNF.

Step 1: Convert grammar into CNF.

- As this grammar has only two terminal symbols a and b. Therefore we consider two new nonterminals X and Y .
- First convert the production rules in to the standard production forms. The grammar becomes

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{YA} & \mathrm{~B} \rightarrow \mathrm{XBB} \\
\mathrm{~S} \rightarrow \mathrm{XB} & \mathrm{~B} \rightarrow \mathrm{YS} \\
\mathrm{~A} \rightarrow \mathrm{YAA} & \mathrm{~B} \rightarrow \mathrm{~b} \\
\mathrm{~A} \rightarrow \mathrm{XS} & \mathrm{X} \rightarrow \mathrm{a} \\
\mathrm{~A} \rightarrow \mathrm{a} & \mathrm{Y} \rightarrow \mathrm{~b}
\end{array}
$$

Step 1: Convert grammar into CNF.

- Now convert these productions into the CNF.
- If a production rule has exactly two nonterminals or a terminal symbol on the RHS, ignore them and consider all the others.
- After conversion the grammar in CNF becomes.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{YA} \mid \mathrm{XB} \\
& \mathrm{~A} \rightarrow \mathrm{YR}_{1}|\mathrm{XS}| \mathrm{a} \\
& \mathrm{R}_{1} \rightarrow \mathrm{AA} \\
& \mathrm{~B} \rightarrow \mathrm{XR}_{2}|\mathrm{YS}| \mathrm{b} \\
& \mathrm{R}_{2} \rightarrow \mathrm{BB} \\
& \mathrm{X} \rightarrow \mathrm{a} \\
& \mathrm{Y} \rightarrow \mathrm{~b}
\end{aligned}
$$

Step 2: Convert CNF into PDA.

- Convert into PDA in class room.

Convert the following into PDA.

1. (i) $\mathrm{S} \rightarrow \mathrm{aSbb} \mid \mathrm{abb}$
(ii) $\mathrm{S} \rightarrow \mathrm{SS}|\mathrm{a}| \mathrm{b}$
2. (i)
(ii)
$\mathrm{S} \rightarrow \mathrm{XaaX}$
ii)
X
$\rightarrow \quad \mathrm{aX}|\mathrm{bX}| \Lambda$
3. (i)
S
$\rightarrow \quad \mathrm{XY}$
(ii) $\mathrm{X} \rightarrow \mathrm{aX}|\mathrm{bX}| \mathrm{a}$
(iii) $\mathrm{Y} \quad \rightarrow \quad \mathrm{Ya}|\mathrm{Yb}| \mathrm{a}$

Building a CFG for every PDA.

- A PDA is in conversion form, if it meets all the following conditions.
- There is only one ACCEPT state.
- There are no REJECT state.
- Every READ state is followed immediately by a POP, that is, every edge leading out of any READ state goes directly into a POP state.
- No two POP exist in a row on the same path without a READ or HERE states between them whether or not there are any intervening PUSH states. (POPs must be separated by READ states).
- Every edge has only one label (no multiple labels).

Building a CFG for every PDA.

- Even before we get to START, a "bottom of STACK" symbol \$, is placed on the STACK. The STACK is never popped beneath this symbol. Right before entering ACCEPT this symbol is popped and left out.
- The PDA must begin with the sequence.

- The entire input string must be read before the machine can accept the word.

Building a CFG for every PDA.

- Condition 1 :
- Condition 1 is easy to accommodate. If we have a PDA with several ACCEPT states. Let us simplify erase all but one of them and have all the edges that formerly went into the others feed into the one remaining.
- Condition 2:
- Condition 2 is easy because we are dealing with nondeterministic machines.
- If we are at a state with no edge labeled with the character we have just read or popped, we simply crash.
- For an input string to be accepted, there must be a safe path to ACCEPT, the absence of such a path is termed as REJECT.
- Therefore, we can erase all REJECT states and the edges leading to them without effecting the language accepted by the PDA.

Building a CFG for every PDA.

- Condition 3:

- Condition 4:
- Condition 6:

STACK

$\$$
Δ

Example.

- PDA in the conversion form. The PDA we use is one that accepts the language.

$$
\left[\mathrm{a}^{2 \mathrm{n}} \mathrm{~b}^{\mathrm{n}}\right]=[\mathrm{aab}, \text { aaaabb, aaaaaabbb,--- }]
$$

Example.

- End of Chapter \# 8

