
Chapter # Chapter # 88
CFG = CFG = PDAPDA
Chapter # Chapter # 88
CFG = CFG = PDAPDA

1

CFG = CFG = PDAPDACFG = CFG = PDAPDA

Dr. Dr. ShaukatShaukat AliAli

Department of Computer ScienceDepartment of Computer Science

University of PeshawarUniversity of Peshawar

Converting CFG into PDA.

• If we are given a CFG in CNF as follows:
X1  X2X3

X2  X4X5

X3  a
X  a

2

X4  a
X5  b

• Where the start symbol S = X1 and other
nonterminals are X2, X3, ----.

• We can use the following algorithm to construct
PDA.

Algorithm for converting CFG into PDA.

• If Xi is the start symbol then convert in to the
following PDA.

START

PUSH Xi POP

3

• For each production of the form

Xj  XkXl

we include the circuit from the POP back to itself.

PUSH Xi POP

Algorithm for converting CFG into PDA.

POP

PUSH Xl

Xj

4

• For all production of the form

Xj  b

we include this circuit.

PUSH Xk

Algorithm for converting CFG into PDA.

READ

POP

Xj

b

5

• When the stack is empty, which means that we
have converted our last nonterminal to a terminal
and the terminals have matched the INPUT
TAPE, we should include the following circuit.

Algorithm for converting CFG into PDA.

• By using this algorithm, we can assure that all words
generated by the CFG will be accepted by the resultant
PDA machine.

POP READ ACCEPTΔ Δ

6

PDA machine.
• That is all for a grammar that is in CNF. But there are

context-free languages that cannot be put into CNF.
• In this case we can convert all productions into one of the

two forms acceptable by CNF, while the word Λ must still
be included.

• To include this word, we need to add another circuit to the
PDA, a simple loop at the POP.

Algorithm for converting CFG into PDA.

• This kills the nonterminal S without replacing

POP

S

7

• This kills the nonterminal S without replacing
with anything and the next time we enter the POP,
we get a blank and proceed to accept the word.

Example.

• Consider the following grammar which is in CNF.

S  SB

S  AB

A  CC

8

A CC

B  b

C  a

convert this grammar into equivalent PDA.

Resulting PDA.

POPPUSH S

START

READ2READ1

READ3

ACCEPT

BC

b

a

Δ

Δ

9

PUSH B

PUSH S

PUSH B

PUSH A

PUSH C

PUSH C

S
S

A

Left-most derivation.

• Lets consider an example aab and derive it by
using left-most derivation using the grammar.

Working string generation. Productions used.

S ==> AB S  AB Step 1

10

==> CCB A  CC Step 2

==> aCB C  a Step 3

==> aaB C  a Step 4

==> aab B  b Step 5

Left-most derivation.

• Now if we simulate the same string aab by using
the resultant PDA, we will see this derivation is
also left-most.

• At each step we will nonterminals on the STACK
as that we have in working string generation in
the left-most derivation.

11

the left-most derivation.

• It means that if we construct PDA for a CFG by
using the above algorithm, the derivation will be
left most derivation.

Example.

• Consider the the following CFG, which is in
CNF.

S  AB

A  BB

B  AB

12

A  a

B  a

B  b

Construct PDA for this grammar.

Resulting PDA.

POPPUSH S

START

READ2READ1

READ4

ACCEPT

BA

a

a

Δ

Δ

READ3

B

b

13

PUSH B

PUSH A

PUSH B

PUSH B

PUSH B

PUSH A

S
A

B

Exercise.

• Try deriving the string baaab by using both left-
most derivation and simulating by using the
resultant PDA.

14

Example.

• Consider the following CFG.

S  AR1 A  a

R1  SA B  b

S  BR2 S  Λ

R2  SB

15

R2 SB

S  AA

S  BB

S  a

S  b

• Construct PDA.

Resulting PDA.

POPPUSH S

START

READ2READ1

READ4

ACCEPT

BS

b

a,b

Δ

Δ

READ3

A

a

S

16

R1 R2 S

PUSH R1

PUSH A

S
PUSH A

PUSH S

PUSH R2

PUSH S

S

PUSH B

PUSH S

PUSH A

PUSH A

PUSH B

PUSH B

S

Example.

• Let us convert the CFG

S  bA | aB

A  bAA | aS | a

B  aBB | bS | b

Construct PDA for this grammar.

17

Construct PDA for this grammar.

• As this grammar is not in CNF, therefore:
1. Convert this grammar into CNF.

2. Construct PDA for the CNF.

Step 1: Convert grammar into CNF.

• As this grammar has only two terminal symbols a
and b. Therefore we consider two new
nonterminals X and Y.

• First convert the production rules in to the
standard production forms. The grammar
becomes

S  YA B  XBB

18

S  YA B  XBB
S  XB B YS
A  YAA B  b
A  XS X  a
A  a Y  b

Step 1: Convert grammar into CNF.

• Now convert these productions into the CNF.

• If a production rule has exactly two nonterminals or a
terminal symbol on the RHS, ignore them and consider all
the others.

• After conversion the grammar in CNF becomes.

S  YA | XB

19

A  YR1 | XS | a

R1 AA

B  XR2 | YS | b

R2 BB

X  a

Y  b

Step 2: Convert CNF into PDA.

• Convert into PDA in class room.

20

Convert the following into PDA.

1. (i) S  aSbb | abb

(ii) S  SS | a | b

2. (i) S  XaaX

(ii) X  aX | bX | Λ

21

(ii) X aX | bX | Λ

3. (i) S  XY

(ii) X  aX | bX | a

(iii) Y  Ya | Yb | a

Building a CFG for every PDA.

• A PDA is in conversion form, if it meets all the
following conditions.
– There is only one ACCEPT state.

– There are no REJECT state.

– Every READ state is followed immediately by a POP,
that is, every edge leading out of any READ state goes

22

that is, every edge leading out of any READ state goes
directly into a POP state.

– No two POP exist in a row on the same path without a
READ or HERE states between them whether or not
there are any intervening PUSH states. (POPs must be
separated by READ states).

– Every edge has only one label (no multiple labels).

Building a CFG for every PDA.

– Even before we get to START, a “bottom of STACK”
symbol $, is placed on the STACK. The STACK is
never popped beneath this symbol. Right before
entering ACCEPT this symbol is popped and left out.

– The PDA must begin with the sequence.

START POP PUSH $ READ

23

– The entire input string must be read before the machine
can accept the word.

START POP PUSH $ READ

Building a CFG for every PDA.

• Condition 1:
– Condition 1 is easy to accommodate. If we have a PDA with

several ACCEPT states. Let us simplify erase all but one of them
and have all the edges that formerly went into the others feed into
the one remaining.

• Condition 2:
– Condition 2 is easy because we are dealing with nondeterministic

machines.

24

machines.

– If we are at a state with no edge labeled with the character we
have just read or popped, we simply crash.

– For an input string to be accepted, there must be a safe path to
ACCEPT, the absence of such a path is termed as REJECT.

– Therefore, we can erase all REJECT states and the edges leading
to them without effecting the language accepted by the PDA.

Building a CFG for every PDA.

• Condition 3:

• Condition 4:

READ READPOP

POP POPREAD

25

• Condition 6:

$

Δ

STACK

POP POPHERE

Example.

• PDA in the conversion form. The PDA we use is
one that accepts the language.

[a2nbn] = [aab, aaaabb, aaaaaabbb,---]

26

START

POP1READ1

b
POP2

POP4PUSH $ $

HERE
a

a
a

a

Example.

27

POP5

PUSH a

READ2

ACCEPTPUSH $

PUSH a

Δ

PUSH a

a

POP6

POP3

b

$

$

• End of Chapter # 8

28

