A

Chapter # 8
CFG =PDA

Dr. Shaukat Ali

Department of Computer Science %
\W/

Converting CFG 1nto PDA.

* If we are given a CFG 1in CNF as follows:
X, =2 XX

X, =2 a
X, =2 a
Xs =2 b

Where the start symbol S = X, and other
nonterminals are X,, X5, ----.

* We can use the following algorithm to construct
PDA.

N| :

Algorithm for converting CFG 1nto PDA.

« If X, 1s the start symbol then convert in to the
following PDA.

(START)

PUSH X; »<_POP

e For each production of the form

X, > XX

we 1include the circuit from the POP back to itself.

N| :

Algorithm for converting CFG into PDA.

POP

X;

PUSH X,

PUSH X,

e For all production of the form
X, =2 b

]
we 1nclude this circuit.

N| 4

Algorithm for converting CFG 1nto PDA.

b READ>-
X;

POP

* When the stack 1s empty, which means that we

have converted our last nonterminal to a terminal
and the terminals have matched the INPUT
TAPE, we should include the following circuit.

N| ;

Algorithm for converting CFG 1nto PDA.

PoP >—2 =® A . AccEpT)
AN

» By using this algorithm, we can assure that all words
generated by the CFG will be accepted by the resultant
PDA machine.

« That 1s all for a grammar that 1s in CNF. But there are
context-free languages that cannot be put into CNF.

 In this case we can convert all productions into one of the

two forms acceptable by CNF, while the word A must still
be included.

* To include this word, we need to add another circuit to the

DA, a simple loop at the POP.
N :

Algorithm for converting CFG into PDA.

> POP

* This kills the nonterminal S without replacing
with anything and the next time we enter the POP,
we get a blank and proceed to accept the word.

N| :

Example.

* Consider the following grammar which 1s in CNF.

S - SB
S - AB
A - CC
B - b

C -

convert this grammar into equivalent PDA.

Resulting PDA.

(START)

\ 4

PUSH S

PUSH B PUSH B PUSH C

PUSH S PUSH A PUSH C

<

<«
<
<«

[eft-most derivation.

* Lets consider an example aab and derive it by
using left-most derivation using the grammar.

Working string generation. Productions used.

S => AB S - AB Stepl
==> (CCB A 2> CC Step2
==> aCB C - a Step 3
==> aaB C - a Step 4
==> aab B 2> b Step 5

Left-most derivation.

« Now if we simulate the same string aab by using
the resultant PDA, we will see this derivation 1s
also left-most.

» At each step we will nonterminals on the STACK
as that we have 1in working string generation in
the left-most derivation.

It means that if we construct PDA for a CFG by
using the above algorithm, the derivation will be
left most derivation.

e
N ;
A\

Example.

* Consider the the following CFG, which 1s in

CNF.
S - AB
A - BB
B - AB
A 2> a
B 2> a
B 2> b

Construct PDA for this grammar.

Resulting PDA.

(START)

\ 4

PUSH S

PUSH B

PUSH A

A
PUSH B PUSH B
PUSH A PUSH B

13

Exercise.

e Try deriving the string baaab by using both left-
most derivation and simulating by using the
resultant PDA.

14

Example.

e Consider the following CFG.

S 2> AR, A 2> a
R, 2> SA B 2> b
S - BR, S 2> A
R, > SB

S 2> AA

S - BB

S -2 a

S 2> b

 (Construct PDA.

=

. ne=2l
N .
A\
(

Resulting PDA.

(START)

PUSH S

S

%33

PUSHRI1

PUSH R2

16

Example.

 Letus convert the CFG
S - DbA|aB
A - DbAA|aS]|a
B - aBB|bS|b

Construct PDA for this grammar.

e As this grammar 1s not in CNF, therefore:

1. Convert this grammar into CNF.
2. Construct PDA for the CNF.

=

. ne=2l
N .
A\
(

Step 1: Convert grammar into CNF.

* As this grammar has only two terminal symbols a
and b. Therefore we consider two new
nonterminals X and Y.

 First convert the production rules in to the
standard production forms. The grammar

becomes
S 2> YA B -2 XBB
S 2> XB B 2YS
A 2 YAA B—2>b
A 2 XS X—2>a
A—2>a Y—=>b

e
N "
A\
(

Step 1: Convert grammar into CNF.

 Now convert these productions into the CNF.

» If a production rule has exactly two nonterminals or a
terminal symbol on the RHS, i1gnore them and consider all
the others.

e After conversion the grammar in CNF becomes.

S 2 YA |XB
A 2> YR,|XS|a
R,2> AA
B 2 XR,|YS|b
R, 2 BB
X 2>a

~ Y 2b

19

Step 2: Convert CNF into PDA.

e Convert into PDA 1n class room.

20

Convert the following into PDA.

. ()
(11)

2. (i)
(11)

3. (i)
(11)
(iii)

9
9

20\ Z

\ 2\ 20 \Z

aSbb | abb
SS|la|b

XaaX
aX | bX | A

XY
aX |bX|a
Ya|Yb|a

21

Building a CFG for every PDA.

A PDA 1s 1n conversion form, 1f it meets all the
following conditions.

— There 1s only one ACCEPT state.

— There are no REJECT state.

— Every READ state 1s followed immediately by a POP,
that 1s, every edge leading out of any READ state goes
directly into a POP state.

— No two POP exist in a row on the same path without a
READ or HERE states between them whether or not
there are any intervening PUSH states. (POPs must be
separated by READ states).

— Every edge has only one label (no multiple labels).

e
N 2
A\

Building a CFG for every PDA.

— Even before we get to START, a “bottom of STACK?”
symbol $, is placed on the STACK. The STACK is
never popped beneath this symbol. Right before
entering ACCEPT this symbol 1s popped and left out.

— The PDA must begin with the sequence.

START @ PUSH $ »READ

— The entire input string must be read before the machine
can accept the word.

A=
N .
A\

Building a CFG for every PDA.

e (Condition 1:

— Condition 1 1s easy to accommodate. If we have a PDA with
several ACCEPT states. Let us simplify erase all but one of them
and have all the edges that formerly went into the others feed into
the one remaining.

 (Condition 2:

— Condition 2 is easy because we are dealing with nondeterministic
machines.

— If we are at a state with no edge labeled with the character we
have just read or popped, we simply crash.

— For an input string to be accepted, there must be a safe path to
ACCEPT, the absence of such a path 1s termed as REJECT.

— Therefore, we can erase all REJECT states and the edges leading
to them without effecting the language accepted by the PDA.

24

Building a CFG for every PDA.

e (Condition 3:

@
. Condltlon @ @

e (Condition 6:

) =)
@ 25

Example.

 PDA 1n the conversion form. The PDA we use 1s
one that accepts the language.

[a>"b"] = [aab, aaaabb, aaaaaabbb,---]

26

Example.

PUSH §

READ,

POP,

PUSH a

\ 4

PUSH a

27

* End of Chapter # 8

28

