
Chapter # Chapter # 88
CFG = CFG = PDAPDA
Chapter # Chapter # 88
CFG = CFG = PDAPDA

1

CFG = CFG = PDAPDACFG = CFG = PDAPDA

Dr. Dr. ShaukatShaukat AliAli

Department of Computer ScienceDepartment of Computer Science

University of PeshawarUniversity of Peshawar

Converting CFG into PDA.

• If we are given a CFG in CNF as follows:
X1 X2X3

X2 X4X5

X3 a
X a

2

X4 a
X5 b

• Where the start symbol S = X1 and other
nonterminals are X2, X3, ----.

• We can use the following algorithm to construct
PDA.

Algorithm for converting CFG into PDA.

• If Xi is the start symbol then convert in to the
following PDA.

START

PUSH Xi POP

3

• For each production of the form

Xj XkXl

we include the circuit from the POP back to itself.

PUSH Xi POP

Algorithm for converting CFG into PDA.

POP

PUSH Xl

Xj

4

• For all production of the form

Xj b

we include this circuit.

PUSH Xk

Algorithm for converting CFG into PDA.

READ

POP

Xj

b

5

• When the stack is empty, which means that we
have converted our last nonterminal to a terminal
and the terminals have matched the INPUT
TAPE, we should include the following circuit.

Algorithm for converting CFG into PDA.

• By using this algorithm, we can assure that all words
generated by the CFG will be accepted by the resultant
PDA machine.

POP READ ACCEPTΔ Δ

6

PDA machine.
• That is all for a grammar that is in CNF. But there are

context-free languages that cannot be put into CNF.
• In this case we can convert all productions into one of the

two forms acceptable by CNF, while the word Λ must still
be included.

• To include this word, we need to add another circuit to the
PDA, a simple loop at the POP.

Algorithm for converting CFG into PDA.

• This kills the nonterminal S without replacing

POP

S

7

• This kills the nonterminal S without replacing
with anything and the next time we enter the POP,
we get a blank and proceed to accept the word.

Example.

• Consider the following grammar which is in CNF.

S SB

S AB

A CC

8

A CC

B b

C a

convert this grammar into equivalent PDA.

Resulting PDA.

POPPUSH S

START

READ2READ1

READ3

ACCEPT

BC

b

a

Δ

Δ

9

PUSH B

PUSH S

PUSH B

PUSH A

PUSH C

PUSH C

S
S

A

Left-most derivation.

• Lets consider an example aab and derive it by
using left-most derivation using the grammar.

Working string generation. Productions used.

S ==> AB S AB Step 1

10

==> CCB A CC Step 2

==> aCB C a Step 3

==> aaB C a Step 4

==> aab B b Step 5

Left-most derivation.

• Now if we simulate the same string aab by using
the resultant PDA, we will see this derivation is
also left-most.

• At each step we will nonterminals on the STACK
as that we have in working string generation in
the left-most derivation.

11

the left-most derivation.

• It means that if we construct PDA for a CFG by
using the above algorithm, the derivation will be
left most derivation.

Example.

• Consider the the following CFG, which is in
CNF.

S AB

A BB

B AB

12

A a

B a

B b

Construct PDA for this grammar.

Resulting PDA.

POPPUSH S

START

READ2READ1

READ4

ACCEPT

BA

a

a

Δ

Δ

READ3

B

b

13

PUSH B

PUSH A

PUSH B

PUSH B

PUSH B

PUSH A

S
A

B

Exercise.

• Try deriving the string baaab by using both left-
most derivation and simulating by using the
resultant PDA.

14

Example.

• Consider the following CFG.

S AR1 A a

R1 SA B b

S BR2 S Λ

R2 SB

15

R2 SB

S AA

S BB

S a

S b

• Construct PDA.

Resulting PDA.

POPPUSH S

START

READ2READ1

READ4

ACCEPT

BS

b

a,b

Δ

Δ

READ3

A

a

S

16

R1 R2 S

PUSH R1

PUSH A

S
PUSH A

PUSH S

PUSH R2

PUSH S

S

PUSH B

PUSH S

PUSH A

PUSH A

PUSH B

PUSH B

S

Example.

• Let us convert the CFG

S bA | aB

A bAA | aS | a

B aBB | bS | b

Construct PDA for this grammar.

17

Construct PDA for this grammar.

• As this grammar is not in CNF, therefore:
1. Convert this grammar into CNF.

2. Construct PDA for the CNF.

Step 1: Convert grammar into CNF.

• As this grammar has only two terminal symbols a
and b. Therefore we consider two new
nonterminals X and Y.

• First convert the production rules in to the
standard production forms. The grammar
becomes

S YA B XBB

18

S YA B XBB
S XB B YS
A YAA B b
A XS X a
A a Y b

Step 1: Convert grammar into CNF.

• Now convert these productions into the CNF.

• If a production rule has exactly two nonterminals or a
terminal symbol on the RHS, ignore them and consider all
the others.

• After conversion the grammar in CNF becomes.

S YA | XB

19

A YR1 | XS | a

R1 AA

B XR2 | YS | b

R2 BB

X a

Y b

Step 2: Convert CNF into PDA.

• Convert into PDA in class room.

20

Convert the following into PDA.

1. (i) S aSbb | abb

(ii) S SS | a | b

2. (i) S XaaX

(ii) X aX | bX | Λ

21

(ii) X aX | bX | Λ

3. (i) S XY

(ii) X aX | bX | a

(iii) Y Ya | Yb | a

Building a CFG for every PDA.

• A PDA is in conversion form, if it meets all the
following conditions.
– There is only one ACCEPT state.

– There are no REJECT state.

– Every READ state is followed immediately by a POP,
that is, every edge leading out of any READ state goes

22

that is, every edge leading out of any READ state goes
directly into a POP state.

– No two POP exist in a row on the same path without a
READ or HERE states between them whether or not
there are any intervening PUSH states. (POPs must be
separated by READ states).

– Every edge has only one label (no multiple labels).

Building a CFG for every PDA.

– Even before we get to START, a “bottom of STACK”
symbol $, is placed on the STACK. The STACK is
never popped beneath this symbol. Right before
entering ACCEPT this symbol is popped and left out.

– The PDA must begin with the sequence.

START POP PUSH $ READ

23

– The entire input string must be read before the machine
can accept the word.

START POP PUSH $ READ

Building a CFG for every PDA.

• Condition 1:
– Condition 1 is easy to accommodate. If we have a PDA with

several ACCEPT states. Let us simplify erase all but one of them
and have all the edges that formerly went into the others feed into
the one remaining.

• Condition 2:
– Condition 2 is easy because we are dealing with nondeterministic

machines.

24

machines.

– If we are at a state with no edge labeled with the character we
have just read or popped, we simply crash.

– For an input string to be accepted, there must be a safe path to
ACCEPT, the absence of such a path is termed as REJECT.

– Therefore, we can erase all REJECT states and the edges leading
to them without effecting the language accepted by the PDA.

Building a CFG for every PDA.

• Condition 3:

• Condition 4:

READ READPOP

POP POPREAD

25

• Condition 6:

$

Δ

STACK

POP POPHERE

Example.

• PDA in the conversion form. The PDA we use is
one that accepts the language.

[a2nbn] = [aab, aaaabb, aaaaaabbb,---]

26

START

POP1READ1

b
POP2

POP4PUSH $ $

HERE
a

a
a

a

Example.

27

POP5

PUSH a

READ2

ACCEPTPUSH $

PUSH a

Δ

PUSH a

a

POP6

POP3

b

$

$

• End of Chapter # 8

28

