Chapter # 8 CFG = PDA

Dr. Shaukat Ali Department of Computer Science University of Peshawar

AT'S

1

Converting CFG into PDA.

• If we are given a CFG in CNF as follows:

- Where the start symbol $S = X_1$ and other nonterminals are $X_2, X_3, ----$.
- We can use the following algorithm to construct PDA.

• If X_i is the start symbol then convert in to the following PDA.

• For each production of the form

$$X_j \rightarrow X_k X_l$$

we include the circuit from the POP back to itself.

• When the stack is empty, which means that we have converted our last nonterminal to a terminal and the terminals have matched the INPUT TAPE, we should include the following circuit.

POP

• By using this algorithm, we can assure that all words generated by the CFG will be accepted by the resultant PDA machine.

READ

ACCEPT

- That is all for a grammar that is in CNF. But there are context-free languages that cannot be put into CNF.
- In this case we can convert all productions into one of the two forms acceptable by CNF, while the word Λ must still be included.
- To include this word, we need to add another circuit to the PDA, a simple loop at the POP.

• This kills the nonterminal S without replacing with anything and the next time we enter the POP, we get a blank and proceed to accept the word.

• Consider the following grammar which is in CNF.

S	\rightarrow	SB
S	\rightarrow	AB
А	\rightarrow	CC
В	\rightarrow	b
С	\rightarrow	а

convert this grammar into equivalent PDA.

Left-most derivation.

• Lets consider an example aab and derive it by using left-most derivation using the grammar.

10

Left-most derivation.

- Now if we simulate the same string aab by using the resultant PDA, we will see this derivation is also left-most.
- At each step we will nonterminals on the STACK as that we have in working string generation in the left-most derivation.
- It means that if we construct PDA for a CFG by using the above algorithm, the derivation will be left most derivation.

• Consider the the following CFG, which is in CNF.

S	\rightarrow	AB
А	\rightarrow	BB
В	\rightarrow	AB
А	\rightarrow	a
В	\rightarrow	а
В	\rightarrow	b

Construct PDA for this grammar.

Exercise.

• Try deriving the string baaab by using both leftmost derivation and simulating by using the resultant PDA.

- Consider the following CFG.
 - S \rightarrow AR_1 A \mathbf{R}_1 \rightarrow SA B \rightarrow S BR_2 S \rightarrow \mathbf{R}_2 SB \rightarrow AA S \rightarrow S BB \rightarrow S a \rightarrow S b
- Construct PDA.

 \rightarrow

 \rightarrow

 \rightarrow

a

b

Λ

- Let us convert the CFG
 - S \rightarrow bA | aB
 - $A \rightarrow bAA \mid aS \mid a$
 - $B \rightarrow aBB | bS | b$
 - Construct PDA for this grammar.
- As this grammar is not in CNF, therefore:
 - 1. Convert this grammar into CNF.
 - 2. Construct PDA for the CNF.

Step 1: Convert grammar into CNF.

- As this grammar has only two terminal symbols a and b. Therefore we consider two new nonterminals X and Y.
- First convert the production rules in to the standard production forms. The grammar becomes

$S \rightarrow YA$	$B \rightarrow XBB$
$S \rightarrow XB$	B →YS
$A \rightarrow YAA$	B → b
$A \rightarrow XS$	$X \rightarrow a$
$A \rightarrow a$	Y→b

Step 1: Convert grammar into CNF.

- Now convert these productions into the CNF.
- If a production rule has exactly two nonterminals or a terminal symbol on the RHS, ignore them and consider all the others.
- After conversion the grammar in CNF becomes.

$$S \rightarrow YA | XB$$

 $A \rightarrow YR_1 | XS | a$
 $R_1 \rightarrow AA$
 $B \rightarrow XR_2 | YS | b$
 $R_2 \rightarrow BB$
 $X \rightarrow a$
 $Y \rightarrow b$

Step 2: Convert CNF into PDA.

• Convert into PDA in class room.

Convert the following into PDA.						
1.	(i)	S	\rightarrow	aSbb abb		
	(ii)	S	\rightarrow	SS a b		
2.	(i)	S	\rightarrow	XaaX		
	(ii)	Х	\rightarrow	aX bX A		
3.	(i)	S	\rightarrow	XY		
	(ii)	Х	\rightarrow	aX bX a		
	(iii)	Y	\rightarrow	Ya Yb a		

- A PDA is in conversion form, if it meets all the following conditions.
 - There is only one ACCEPT state.
 - There are no REJECT state.
 - Every READ state is followed immediately by a POP, that is, every edge leading out of any READ state goes directly into a POP state.
 - No two POP exist in a row on the same path without a READ or HERE states between them whether or not there are any intervening PUSH states. (POPs must be separated by READ states).
 - Every edge has only one label (no multiple labels).

- Even before we get to START, a "bottom of STACK" symbol \$, is placed on the STACK. The STACK is never popped beneath this symbol. Right before entering ACCEPT this symbol is popped and left out.
- The PDA must begin with the sequence.

 The entire input string must be read before the machine can accept the word.

- Condition 1:
 - Condition 1 is easy to accommodate. If we have a PDA with several ACCEPT states. Let us simplify erase all but one of them and have all the edges that formerly went into the others feed into the one remaining.
- Condition 2:
 - Condition 2 is easy because we are dealing with nondeterministic machines.
 - If we are at a state with no edge labeled with the character we have just read or popped, we simply crash.
 - For an input string to be accepted, there must be a safe path to ACCEPT, the absence of such a path is termed as REJECT.
 - Therefore, we can erase all REJECT states and the edges leading to them without effecting the language accepted by the PDA.

• Condition 3:

Condition 4:
POP
READ
POP
HERE
POP
HERE
POP

STACK

\$

Δ

• PDA in the conversion form. The PDA we use is one that accepts the language.

 $[a^{2n}b^n] = [aab, aaaabb, aaaaabbb, ---]$

• End of Chapter # 8

